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The formulas for the force exerted by the interface upon the fluids, given by Stelitano and R¢Bimyan
Rev. E 62, 6667 (2000] are corrected.
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In Ref. [1] the expression for the force exerted by the
interface upon the fluids was obtained by applying Hamil- ﬁid:JfLiddUdL
ton’s principle to the following Lagrangian describing the

interface dynamics: where
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Here p is the density of the hypersurface,is the bending (7)
rigidity, H is the mean curvature; is the surface tensionS
is the volume element for the parametrization
=r(uy,...,u,) of the n-dimensional hypersurface embedded &Xternal forcer
in the (n+1)-dimensional space&=ar /4t is the velocity. The

parametrization was assumed to satisfy the condition SL=68Lig+ f f Fext: ordudt=0, (8)

(6)

By applying Hamilton’s principle, including a term for an
oxt PEr elementduy,

ar Jar
ETRET = Gijs (2) one can express the force_ exerted_ by_the interface upon the

: ) fluids, F=-F.,, as a variational derivative
& being the Kronecker delta, which was used throughout the
calculations. Generally, E@) is not valid after applying the Fo OLig ©
variation &r to the locusr of the interface, but this was not o
taken into account in the derivation.

In the present comment, for simplicity, we demonstrateAs in Ref.[1], the boundary terms vanish for closed surfaces
the derivation of the correct expression for the force correOr periodic boundary conditions, and the variational deriva-
sponding to the Lagrangiafl) using the example of a one- tive Is
dimensional interface embedded in the two-dimensional

space. In this case the locus of the interfacgepends on a OLig __ 9 dLig_ 9 dlig . # dlig (10)
single spatial parameter. We shall assume that the spatial or at ot ouar’  gudor’’
and time dependenae=r (u,t) is sufficiently well behaved.
The metric tensor has a single component Substituting(6) into (10) and then into(9), taking into ac-
5 count(3) and settingg=1 and all the derivatives af to zero
g=g(ut = <(9_r) _ 3) after the differentiation, we obtain
u Pr 1
The unit tangent vectoe=g~4(dr/4u) and the unit normal Frp 2= [6<H" + §H3> - UH}n. (11)
vector n satisfy the relationsin/du=+gHe and de/Ju=
—\VgHn, and one can write whereH” is the second derivative of the local curvature with
A 9 - 1 4g respect to the arcle.ngth in a canonical parametri;ation.
—=—(Jge)=—gHn+ —=—"e. (4) The formula(1l) is different from the Eq(2.3) given in
Ju”  du 2\gau Ref.[1] and may result in force different in magnitude and

sign. The validation simulations undertaken in Hé&f. were
in agreement with the theoretical calculations because both
, 1(&r 2 1 [o9g)? were based on the same form@a3, Ref.[1]) that does not
Ho= ; a2 4_93 au ®) take into account the variation of metrics.

_ Applying an equivalent method to the Lagrangidn for
Casting the volume element d$=\gdu and using(3) and  the two-dimensional surface embedded in the three-
(5) we can recast the Lagrangi@h) as dimensional space yields the expression

It follows from (4) that
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F + pf =[e(V?H + 2H® - 2HK) - oH]n, (12) —J KdS, (14
€

where H=vy,+v, is the mean curvatureK=1vy,7y, is the
Gaussian curvaturey andy, are the principal curvatures of
the surfaceV?=?/ guz+?/ du3, r =r(Uy,Us,t) is the canoni-
cal parametrization of the two-dimensional surface, satisfy

) - which is related to the Gaussian curvature and characterized
ing the condition

by the saddle-splay modulus gives no contribution to the
ar  or force in accordance with the Gauss-Bonnet theorem which
— j - (13)  implies that the integrall4) does not change for the varia-
tions of the surface that do not change its topology, and
The equation(12) disagrees with the equatid@A13) of Ref.  hence the variation ofl4) is zero. This is supported by the
[1] for the reasons considered above. An additional term irexplicit calculations with the described method, but contra-
the free energy considered in REL], dicts the equatiortA13) obtained in the 1].
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